An intelligent CRF based feature selection for effective intrusion detection
نویسندگان
چکیده
As the internet applications are growing rapidly, the intrusions to the networking system are also becoming high. In such a scenario, it is necessary to provide security to the networks by means of effective intrusion detection and prevention methods. This can be achieved mainly by developing efficient intrusion detecting systems that use efficient algorithms which can identify the abnormal activities in the network traffic and protect the network resources from illegal penetrations by intruders. Though many intrusion detection systems have been proposed in the past, the existing network intrusion detections have limitations in terms of detection time and accuracy. To overcome these drawbacks, we propose a new intrusion detection system in this paper by developing a new intelligent Conditional Random Field (CRF) based feature selection algorithm to optimize the number of features. In addition, an existing Layered Approach (LA) based algorithm is used to perform classification with these reduced features. This intrusion detection system provides high accuracy and achieves efficiency in attack detection compared to the existing approaches. The major advantages of this proposed system are reduction in detection time, increase in classification accuracy and reduction in false alarm rates.
منابع مشابه
A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملIntrusion Detection based on a Novel Hybrid Learning Approach
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملA Novel Intrusion Detection Systems based on Genetic Algorithms-suggested Features by the Means of Different Permutations of Labels’ Orders
Intrusion detection systems (IDS) by exploiting Machine learning techniques are able to diagnose attack traffics behaviors. Because of relatively large numbers of features in IDS standard benchmark dataset, like KDD CUP 99 and NSL_KDD, features selection methods play an important role. Optimization algorithms like Genetic algorithms (GA) are capable of finding near-optimum combination of the fe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. Arab J. Inf. Technol.
دوره 13 شماره
صفحات -
تاریخ انتشار 2016